A periodic clustering review of outdoor thermal comfort studies in this century for their developing trends

Main Article Content

Jian Zhang
Feng Zhu
Yisha Liu
Xiaowei Shang
Fan Liu
Fanchun Liu
Binbin Chen
Siqi Wang

Abstract

Outdoor thermal comfort (OTC) was significantly affecting human living qualities. Studies about them were popular in recent decades. They explored people’s perception variations towards different thermal conditions. Most studies were conducted in similar ways. They collected data of subjects by questionnaire and of meteorology by instruments or sensors. Findings were acquired through statistical associating data of the two aspects, which is expressed by neutral temperatures (NT) etc. Since the development of techniques and the improvement of residents’ needs, the studies in different periods varied technically. Some post-2020 studies involved an extra factor differing samples, e.g., age, origin, activity intensity etc., discovering NTs varying for either of the factor. They were rarely considered in studies during 2010s. This showed the periodic developments and changes of OTC studies, which is  rarely significantly concluded and discussed previously. This article conducted a periodic clustering review of OTC studies published in this century. Selected papers were clustered into several groups regarding their properties. Some trends about their developments were found. They were directive for future studies of this topic.

Article Details

Section

Other

How to Cite

A periodic clustering review of outdoor thermal comfort studies in this century for their developing trends. (2025). FINANCE A ÚVĚR-CZECH JOURNAL OF ECONOMICS AND FINANCE, 75(1). https://doi.org/10.32065/vol75n1a68

References

[1] J. Zong, L. Wang, C. Lu, Y. Du, Q. Wang, Mapping health vulnerability to short-term summer heat exposure based on a directional interaction network: Hotspots and coping strategies, Science of The Total Environment. 881 (2023) 163401. https://doi.org/10.1016/j.scitotenv.2023.163401.

[2] B.-J. He, D. Zhao, X. Dong, Z. Zhao, L. Li, L. Duo, J. Li, Will individuals visit hospitals when suffering heat-related illnesses? Yes, but…, Build Environ. 208 (2022) 108587. https://doi.org/10.1016/j.buildenv.2021.108587.

[3] J. Hwang, J. Jeong, M. Lee, J. Jeong, J. Lee, Establishment of outdoor thermal comfort index groups for quantifying climate impact on construction accidents, Sustain Cities Soc. 91 (2023) 104431. https://doi.org/10.1016/j.scs.2023.104431.

[4] J. Yang, M. Zhou, Z. Ren, M. Li, B. Wang, D.L. Liu, C.-Q. Ou, P. Yin, J. Sun, S. Tong, H. Wang, C. Zhang, J. Wang, Y. Guo, Q. Liu, Projecting heat-related excess mortality under climate change scenarios in China, Nat Commun. 12 (2021) 1039. https://doi.org/10.1038/s41467-021-21305-1.

[5] J. Zhang, F. Zhang, Z. Gou, J. Liu, Assessment of macroclimate and microclimate effects on outdoor thermal comfort via artificial neural network models, Urban Clim. 42 (2022) 101134. https://doi.org/10.1016/j.uclim.2022.101134.

[6] H. Huang, M. Peng, The outdoor thermal comfort of urban square: A field study in a cold season in Chongqing, IOP Conference Series: Earth and Environmental Science. 467 (2020) 012215. https://doi.org/10.1088/1755-1315/467/1/012215.

[7] Q. Yin, Y. Cao, C. Sun, Research on outdoor thermal comfort of high-density urban center in severe cold area, Build Environ. 200 (2021) 107938. https://doi.org/10.1016/j.buildenv.2021.107938.

[8] M. Zhang, C. Xu, L. Meng, X. Meng, Outdoor comfort level improvement in the traffic waiting areas by using a mist spray system: An experiment and questionnaire study, Sustain Cities Soc. 71 (2021) 102973. https://doi.org/10.1016/j.scs.2021.102973.

[9] K. Li, T. Xia, W. Li, Evaluation of Subjective Feelings of Outdoor Thermal Comfort in Residential Areas: A Case Study of Wuhan, Buildings-Basel. 11 (2021) 389. https://doi.org/10.3390/buildings11090389.

[10] J. Lucchese, L. Mikuri, N. De Freitas, W. Andreasi, Application of selected indices on outdoor thermal comfort assessment in Midwest Brazil, International Journal of Energy and Environment. 7 (2016) 291–302.

[11] ASHRAE, ASHRAE, (2023). https://www.ashrae.org/ (accessed November 19, 2023).

[12] ISO, ISO - Standards, ISO. (2023). https://www.iso.org/standards.html (accessed July 24, 2023).

[13] J. Yao, F. Yang, Z. Zhuang, Y. Shao, P.F. Yuan, The effect of personal and microclimatic variables on outdoor thermal comfort: A field study in a cold season in Lujiazui CBD, Shanghai, Sustain Cities Soc. 39 (2018) 181–188. https://doi.org/10.1016/j.scs.2018.02.025.

[14] N. Kántor, A. Kovács, Á. Takács, Seasonal differences in the subjective assessment of outdoor thermal conditions and the impact of analysis techniques on the obtained results, Int J Biometeorol. 60 (2016). https://doi.org/10.1007/s00484-016-1151-x.

[15] K. Li, Y. Zhang, L. Zhao, Outdoor thermal comfort and activities in the urban residential community in a humid subtropical area of China, Energ Buildings. 133 (2016) 498–511. https://doi.org/10.1016/j.enbuild.2016.10.013.

[16] S. Sangkertadi, R. Syafriny, New Equation for Estimating Outdoor Thermal Comfort in Humid-Tropical Environment, Eur J Sustain Dev. 3 (2014) 43. https://doi.org/10.14207/ejsd.2014.v3n4p43.

[17] N. Chrisomallidou, K. Tsikaloudaki, T. Theodosiou, Quality of life and open spaces:, (2001).

[18] L. Katzschner, Urban bioclimate and open space planning, (2002).

[19] T.-P. Lin, R. de Dear, R.-L. Hwang, Effect of thermal adaptation on seasonal outdoor thermal comfort, Int J Climatol. 31 (2011) 302–312. https://doi.org/10.1002/joc.2120.

[20] K.K.-L. Lau, Z. Tan, T.E. Morakinyo, C. Ren, Human Thermal Comfort in Sub-tropical Urban Environments, in: K.K.-L. Lau, Z. Tan, T.E. Morakinyo, C. Ren (Eds.), Outdoor Thermal Comfort in Urban Environment: Assessments and Applications in Urban Planning and Design, Springer, Singapore, 2022: pp. 13–33. https://doi.org/10.1007/978-981-16-5245-5_2.

[21] M. Hadianpour, M. Mahdavinejad, M. Bemanian, F. Nasrollahi, Seasonal differences of subjective thermal sensation and neutral temperature in an outdoor shaded space in Tehran, Iran, Sustainable Cities and Society. 39 (2018) 751–764. https://doi.org/10.1016/j.scs.2018.03.003.

[22] T. Tang, Y. Zhang, Z. Zheng, X. Zhou, Z. Fang, W. Liu, Detailed thermal indicators analysis based on outdoor thermal comfort indices in construction sites in South China, Build Environ. 205 (2021) 108191. https://doi.org/10.1016/j.buildenv.2021.108191.

[23] R. Sasaki, M. Yamada, Y. Uematsu, H. Saeki, Comfort environment assessment based on bodily sensation in open air: relationship between comfort sensation and meteorological factors, J Wind Eng Ind Aerod. 87 (2000) 93–110. https://doi.org/10.1016/S0167-6105(00)00018-0.

[24] J. Fergus Nicol, Chapter 90 - Time and Thermal Comfort: Evidence from the Field, in: A.A.M. Sayigh (Ed.), World Renewable Energy Congress VI, Pergamon, Oxford, 2000: pp. 477–482. https://doi.org/10.1016/B978-008043865-8/50090-8.

[25] G. Jendritzky, A. Maarouf, H. Staiger, Looking for a Universal Thermal Climate Index UTCI for Outdoor Applications, Windsor Conference on Thermal Standards. (2001).

[26] U. Westerberg, I. Knez, I. Eliasson, Urban climate spaces, A Multidisciplinary research project, (2001).

[27] M. Nikolopoulou, Microclimate and comfort conditions in urban spaces An intricate relationship.pdf, (2002).

[28] J. Spagnolo, R. de Dear, A human thermal climatology of subtropical Sydney, Int J Climatol. 23 (2003) 1383–1395. https://doi.org/10.1002/joc.939.

[29] C.R. de Freitas, Tourism climatology: evaluating environmental information for decision making and business planning in the recreation and tourism sector, Int J Biometeorol. 48 (2003) 45–54. https://doi.org/10.1007/s00484-003-0177-z.

[30] M. Nikolopoulou, S. Lykoudis, M. Kikira, THERMAL COMFORT IN OUTDOOR SPACES: FIELD STUDIES IN GREECE, in: 2003.

[31] K. Cena, N. Davey, T. Erlandson, Thermal comfort and clothing insulation of resting tent occupants at high altitude, Appl Ergon. 34 (2003) 543–550. https://doi.org/10.1016/S0003-6870(03)00084-X.

[32] K.S. Ahmed, Comfort in urban spaces: defining the boundaries of outdoor thermal comfort for the tropical urban environments, Energ Buildings. 35 (2003) 103–110. https://doi.org/10.1016/S0378-7788(02)00085-3.

[33] M. Nikolopoulou, N. Baker, K. Steemers, Thermal comfort in outdoor urban spaces: understanding the human parameter, Sol Energy. 70 (2001) 227–235. https://doi.org/10.1016/S0038-092X(00)00093-1.

[34] J. Spagnolo, R. de Dear, A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia, Build Environ. 38 (2003) 721–738. https://doi.org/10.1016/S0360-1323(02)00209-3.

[35] S. Thorsson, M. Lindqvist, S. Lindqvist, Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden, Int J Biometeorol. 48 (2004) 149–156. https://doi.org/10.1007/s00484-003-0189-8.

[36] T. Stathopoulos, H. Wu, J. Zacharias, Outdoor human comfort in an urban climate, Build Environ. 39 (2004) 297–305. https://doi.org/10.1016/j.buildenv.2003.09.001.

[37] B. Givoni, M. Noguchi, Outdoor Comfort Responses of Japanese Persons, in: 2004. https://www.semanticscholar.org/paper/Outdoor-Comfort-Responses-of-Japanese-Persons-Givoni-Noguchi/6e5ad5f4a95a6c5ab1dc184db6f831df1da61050 (accessed July 3, 2023).

[38] L. Katzschner, Open space design strategies based on thermal comfort analysis, PLEA - Conf. Passive Low Energy Archit. (2004).

[39] S. Reiter, Correspondences between the conception principles of sustainable public spaces and the criteria of outdoor comfort, (2004).

[40] U. Westerberg, Climate and the use of urban public spaces, (2004).

[41] M. Saito, A. Ishii, H. Oi, Prediction of clothing insulation in a outdoor environment, based on questionnaires, Elsevier Ergonomics Book Series. 3 (2005) 355–360. https://doi.org/10.1016/S1572-347X(05)80056-4.

[42] A. H, O. S, An assessment of the outdoor bioclimatic comfort in Lisbon, (2005). http://www.ceg.ul.pt/urbklim/Extended_Abstract_Berlin.pdf (accessed July 3, 2023).

[43] M. Nikolopoulou, S. Lykoudis, Thermal comfort in outdoor urban spaces: Analysis across different European countries, Build Environ. 41 (2006) 1455–1470. https://doi.org/10.1016/j.buildenv.2005.05.031.

[44] L. Zambrano, C. Malafaia, L. Bastos, Thermal comfort evaluation in outdoor space of tropical humid climate, (2006).

[45] F. Nicol, E. Wilson, A. Ueberjahn-Tritta, L. Nanayakkara, Comfort in outdoor spaces in Manchester and Lewes, UK, (2006).

[46] L. Monteiro, M. Alucci, Transitional spaces in são paulo, brazil: Mathematical modeling and empirical calibration for thermal comfort assessment, IBPSA 2007 - International Building Performance Simulation Association 2007. (2007).

[47] J. Bouyer, J. Vinet, P. Delpech, S. Carré, Thermal comfort assessment in semi-outdoor environments: Application to comfort study in stadia, J Wind Eng Ind Aerod. 95 (2007) 963–976. https://doi.org/10.1016/j.jweia.2007.01.022.

[48] D. Walton, V. Dravitzki, M. Donn, The relative influence of wind, sunlight and temperature on user comfort in urban outdoor spaces, Build Environ. 42 (2007) 3166–3175. https://doi.org/10.1016/j.buildenv.2006.08.004.

[49] N. Gaitani, G. Mihalakakou, M. Santamouris, On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces, Build Environ. 42 (2007) 317–324. https://doi.org/10.1016/j.buildenv.2005.08.018.

[50] N. Kántor, J. Unger, Á. Gulyás, Human bioclimatological evaluation with objective and subjective approaches on the thermal conditions of a square in the centre of Szeged, (2007).

[51] S. Oliveira, H. Andrade, M.J. Alcoforado, Assessment of the bioclimatic comfort in different outdoor public spaces of Lisbon, (2008).

[52] T.-P. Lin, Thermal perception, adaptation and attendance in a public square in hot and humid regions, Build Environ. 44 (2009) 2017–2026. https://doi.org/10.1016/j.buildenv.2009.02.004.

[53] Z.A. Velkov, Spot analysis of thermal comfort in some open urban spaces of Craiova city.pdf, (2009).

[54] T.P. Lin, R. de Dear, A. Matzarakis, R.-L. Hwang, Prediction of thermal acceptability in hot-humid outdoor environments in Taiwan, in: 2009.

[55] F. Aljawabra, M. Nikolopoulou, Outdoor Thermal Comfort in the Hot Arid Climate The effect of socio-economic background and cultural differences, (2009).

[56] P. Katerina, T. Georgios, S. Mattheos, A. Dimosthenis, M. Anastasios, Outdoor Thermal Comfort and Human Health Effects, (2009).

[57] T.-P. Lin, Outdoor thermal comfort acceptable range and campus microclimate in hot-humid region, (2009). https://www.academia.edu/12165976/Outdoor_thermal_comfort_acceptable_range_and_campus_microclimate_in_hot_humid_region (accessed July 2, 2023).

[58] S. Sangkertadi, C. Wuisang, R. Syafriny, Influence of Surface Material and Trees Density on Thermal Environment and Comfort for Pedestrian in Tropical and Humid Climate, in: 2009.

[59] K. Sasaki, H. Mayer, A. Mochida, M. Uchida, T. Tonouchi, S. Corporation, Field measurement on thermal comfort in outdoor locations, (2009).

[60] N. Kántor, L. Égerházi, Á. Gulyás, J. Unger, Attendance of a green area in Szeged according to the thermal comfort conditions, (2009).

[61] V. Cheng, E. Ng, C. Chan, B. Givoni, Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong, Int J Biometeorol. 56 (2012) 43–56. https://doi.org/10.1007/s00484-010-0396-z.

[62] A. Tseliou, I.X. Tsiros, S. Lykoudis, M. Nikolopoulou, An evaluation of three biometeorological indices for human thermal comfort in urban outdoor areas under real climatic conditions, Build Environ. 45 (2010) 1346–1352. https://doi.org/10.1016/j.buildenv.2009.11.009.

[63] Y. Shimazaki, A. Yoshida, R. Suzuki, T. Kawabata, D. Imai, S. Kinoshita, Application of human thermal load into unsteady condition for improvement of outdoor thermal comfort, Build Environ. 46 (2011) 1716–1724. https://doi.org/10.1016/j.buildenv.2011.02.013.

[64] T.-P. Lin, K.-T. Tsai, R.-L. Hwang, A. Matzarakis, Quantification of the effect of thermal indices and sky view factor on park attendance, Landscape Urban Plan. 107 (2012) 137–146. https://doi.org/10.1016/j.landurbplan.2012.05.011.

[65] E. Ng, V. Cheng, Urban human thermal comfort in hot and humid Hong Kong, Energ Buildings. 55 (2012) 51–65. https://doi.org/10.1016/j.enbuild.2011.09.025.

[66] N. Makaremi, E. Salleh, M.Z. Jaafar, A. GhaffarianHoseini, Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia, Build Environ. 48 (2012) 7–14. https://doi.org/10.1016/j.buildenv.2011.07.024.

[67] T. Xi, Q. Li, A. Mochida, Q. Meng, Study on the outdoor thermal environment and thermal comfort around campus clusters in subtropical urban areas, Build Environ. 52 (2012) 162–170. https://doi.org/10.1016/j.buildenv.2011.11.006.

[68] P. Bröde, E.L. Krüger, F.A. Rossi, D. Fiala, Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI—a case study in Southern Brazil, Int J Biometeorol. 56 (2012) 471–480. https://doi.org/10.1007/s00484-011-0452-3.

[69] W. Yang, N.H. Wong, S.K. Jusuf, Thermal comfort in outdoor urban spaces in Singapore, Build Environ. 59 (2013) 426–435. https://doi.org/10.1016/j.buildenv.2012.09.008.

[70] K. Pantavou, G. Theoharatos, M. Santamouris, D. Asimakopoulos, Outdoor thermal sensation of pedestrians in a Mediterranean climate and a comparison with UTCI, Build Environ. 66 (2013) 82–95. https://doi.org/10.1016/j.buildenv.2013.02.014.

[71] P. Cohen, O. Potchter, A. Matzarakis, Human thermal perception of Coastal Mediterranean outdoor urban environments, Appl Geogr. 37 (2013) 1–10. https://doi.org/10.1016/j.apgeog.2012.11.001.

[72] T.-P. Lin, K.-T. Tsai, C.-C. Liao, Y.-C. Huang, Effects of thermal comfort and adaptation on park attendance regarding different shading levels and activity types, Build Environ. 59 (2013) 599–611. https://doi.org/10.1016/j.buildenv.2012.10.005.

[73] C.-H. Tung, C.-P. Chen, K.-T. Tsai, N. Kántor, R.-L. Hwang, A. Matzarakis, T.-P. Lin, Outdoor thermal comfort characteristics in the hot and humid region from a gender perspective, Int J Biometeorol. 58 (2014) 1927–1939. https://doi.org/10.1007/s00484-014-0795-7.

[74] M.F. Md Din, Y.Y. Lee, M. Ponraj, D.R. Ossen, K. Iwao, S. Chelliapan, Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate, J Therm Biol. 41 (2014) 6–15. https://doi.org/10.1016/j.jtherbio.2014.01.004.

[75] D. Lai, D. Guo, Y. Hou, C. Lin, Q. Chen, Studies of outdoor thermal comfort in northern China, Build Environ. 77 (2014) 110–118. https://doi.org/10.1016/j.buildenv.2014.03.026.

[76] K. Villadiego, M.A. Velay-Dabat, Outdoor thermal comfort in a hot and humid climate of Colombia: A field study in Barranquilla, Build Environ. 75 (2014) 142–152. https://doi.org/10.1016/j.buildenv.2014.01.017.

[77] S. Watanabe, K. Nagano, J. Ishii, T. Horikoshi, Evaluation of outdoor thermal comfort in sunlight, building shade, and pergola shade during summer in a humid subtropical region, Build Environ. 82 (2014) 556–565. https://doi.org/10.1016/j.buildenv.2014.10.002.

[78] L. Chen, Y. Wen, L. Zhang, W.-N. Xiang, Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai, Build Environ. 94 (2015) 644–653. https://doi.org/10.1016/j.buildenv.2015.10.020.

[79] M.A. Ruiz, E.N. Correa, Adaptive model for outdoor thermal comfort assessment in an Oasis city of arid climate, Build Environ. 85 (2015) 40–51. https://doi.org/10.1016/j.buildenv.2014.11.018.

[80] S. Xue, Y. Xiao, Study on the Outdoor Thermal Comfort Threshold of Lingnan Garden in Summer, Procedia Engineering. 169 (2016) 422–430. https://doi.org/10.1016/j.proeng.2016.10.052.

[81] L. Zhao, X. Zhou, L. Li, S. He, R. Chen, Study on outdoor thermal comfort on a campus in a subtropical urban area in summer, Sustain Cities Soc. 22 (2016). https://doi.org/10.1016/j.scs.2016.02.009.

[82] E.L. Kruger, P. Drach, Identifying potential effects from anthropometric variables on outdoor thermal comfort, Build Environ. 117 (2017) 230–237. https://doi.org/10.1016/j.buildenv.2017.03.020.

[83] N. Nasrollahi, Z. Hatami, M. Taleghani, Development of outdoor thermal comfort model for tourists in urban historical areas; A case study in Isfahan, Build Environ. 125 (2017) 356–372. https://doi.org/10.1016/j.buildenv.2017.09.006.

[84] E. Johansson, M.W. Yahia, I. Arroyo, C. Bengs, Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador, Int J Biometeorol. 62 (2018) 387–399. https://doi.org/10.1007/s00484-017-1329-x.

[85] S.Q. da S. Hirashima, A. Katzschner, D.G. Ferreira, E.S. de Assis, L. Katzschner, Thermal comfort comparison and evaluation in different climates, Urban Clim. 23 (2018) 219–230. https://doi.org/10.1016/j.uclim.2016.08.007.

[86] X. Chen, P. Xue, L. Liu, L. Gao, J. Liu, Outdoor thermal comfort and adaptation in severe cold area: A longitudinal survey in Harbin, China, Build Environ. 143 (2018) 548–560. https://doi.org/10.1016/j.buildenv.2018.07.041.

[87] Y. Xie, T. Huang, J. Li, J. Liu, J. Niu, C.M. Mak, Z. Lin, Evaluation of a multi-nodal thermal regulation model for assessment of outdoor thermal comfort: Sensitivity to wind speed and solar radiation, Build Environ. 132 (2018) 45–56. https://doi.org/10.1016/j.buildenv.2018.01.025.

[88] Z. Fang, X. Xu, X. Zhou, S. Deng, H. Wu, J. Liu, Z. Lin, Investigation into the thermal comfort of university students conducting outdoor training, Build Environ. 149 (2019) 26–38. https://doi.org/10.1016/j.buildenv.2018.12.003.

[89] P.K. Cheung, C.Y. Jim, Improved assessment of outdoor thermal comfort: 1-hour acceptable temperature range, Build Environ. 151 (2019) 303–317. https://doi.org/10.1016/j.buildenv.2019.01.057.

[90] M. Xu, B. Hong, R. Jiang, L. An, T. Zhang, Outdoor thermal comfort of shaded spaces in an urban park in the cold region of China, Build Environ. 155 (2019) 408–420. https://doi.org/10.1016/j.buildenv.2019.03.049.

[91] K.K.-L. Lau, S.C. Chung, C. Ren, Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification, Build Environ. 154 (2019) 227–238. https://doi.org/10.1016/j.buildenv.2019.03.005.

[92] T. Sharmin, K. Steemers, M. Humphreys, Outdoor thermal comfort and summer PET range: A field study in tropical city Dhaka, Energ Buildings. 198 (2019) 149–159. https://doi.org/10.1016/j.enbuild.2019.05.064.

[93] F. Sarhadi, V.B. Rad, The structural model for thermal comfort based on perceptions individuals in open urban spaces, Build Environ. 185 (2020) 107260. https://doi.org/10.1016/j.buildenv.2020.107260.

[94] X. Chen, L. Gao, P. Xue, J. Du, J. Liu, Investigation of outdoor thermal sensation and comfort evaluation methods in severe cold area, Science of The Total Environment. 749 (2020) 141520. https://doi.org/10.1016/j.scitotenv.2020.141520.

[95] A. Speak, L. Montagnani, C. Wellstein, S. Zerbe, Forehead temperatures as an indicator of outdoor thermal comfort and the influence of tree shade, Urban Clim. 39 (2021) 100965. https://doi.org/10.1016/j.uclim.2021.100965.

[96] N. Nasrollahi, Y. Namazi, M. Taleghani, The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: A case study of Ahvaz, Iran, Sustainable Cities and Society. 65 (2021) 102638. https://doi.org/10.1016/j.scs.2020.102638.

[97] K.K.-L. Lau, C.Y. Choi, The influence of perceived aesthetic and acoustic quality on outdoor thermal comfort in urban environment, Build Environ. 206 (2021) 108333. https://doi.org/10.1016/j.buildenv.2021.108333.

[98] C.K.C. Lam, Y. Gao, H. Yang, T. Chen, Y. Zhang, C. Ou, J. Hang, Interactive effect between long-term and short-term thermal history on outdoor thermal comfort: Comparison between Guangzhou, Zhuhai and Melbourne, Science of The Total Environment. 760 (2021) 144141. https://doi.org/10.1016/j.scitotenv.2020.144141.

[99] C.K.C. Lam, S. Cui, J. Liu, X. Kong, C. Ou, J. Hang, Influence of acclimatization and short-term thermal history on outdoor thermal comfort in subtropical South China, Energ Buildings. 231 (2021) 110541. https://doi.org/10.1016/j.enbuild.2020.110541.

[100] D. Gachkar, S.H. Taghvaei, S. Norouzian-Maleki, Outdoor thermal comfort enhancement using various vegetation species and materials (case study: Delgosha Garden, Iran), Sustainable Cities and Society. 75 (2021) 103309. https://doi.org/10.1016/j.scs.2021.103309.

[101] L. An, B. Hong, X. Cui, Y. Geng, X. Ma, Outdoor thermal comfort during winter in China’s cold regions: A comparative study, Science of The Total Environment. 768 (2021) 144464. https://doi.org/10.1016/j.scitotenv.2020.144464.

[102] N. Aghamohammadi, C.S. Fong, M.H. Mohd Idrus, L. Ramakreshnan, U. Haque, Outdoor thermal comfort and somatic symptoms among students in a tropical city, Sustain Cities Soc. 72 (2021) 103015. https://doi.org/10.1016/j.scs.2021.103015.

[103] M. Zhen, Q. Dong, P. Chen, W. Ding, D. Zhou, W. Feng, Urban outdoor thermal comfort in western China, J Asian Archit Build. 20 (2020). https://doi.org/10.1080/13467581.2020.1782210.

[104] T. Tang, X. Zhou, Y. Zhang, X. Feng, W. Liu, Z. Fang, Z. Zheng, Investigation into the thermal comfort and physiological adaptability of outdoor physical training in college students, Science of The Total Environment. 839 (2022) 155979. https://doi.org/10.1016/j.scitotenv.2022.155979.

[105] S.Y. Chan, C.K. Chau, A study of subtropical park thermal comfort and its influential factors during summer, Sustain Cities Soc. 64 (2021) 102512. https://doi.org/10.1016/j.scs.2020.102512.

[106] K. Xiong, B.-J. He, Wintertime outdoor thermal sensations and comfort in cold-humid environments of Chongqing China, Sustain Cities Soc. 87 (2022) 104203. https://doi.org/10.1016/j.scs.2022.104203.

[107] P. Kumar, A. Sharma, Assessing the outdoor thermal comfort conditions of exercising people in the semi-arid region of India, Sustain Cities Soc. 76 (2022) 103366. https://doi.org/10.1016/j.scs.2021.103366.

[108] J. Xiong, B. Cheng, J. Zhang, Y. Liu, X. Tan, M. Shi, X. He, J. Guo, A study of waterside microenvironmental factors and their effects on summer outdoor thermal comfort in a Cfa-climate campus, J Therm Biol. 117 (2023) 103700. https://doi.org/10.1016/j.jtherbio.2023.103700.

[109] P. Höppe, The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment, Int J Biometeorol. 43 (1999) 71–75. https://doi.org/10.1007/s004840050118.

[110] B. Jeong, J. Kim, D. Chen, R. de Dear, Comparison of residential thermal comfort in two different climates in Australia, Build Environ. 211 (2022) 108706. https://doi.org/10.1016/j.buildenv.2021.108706.

[111] Z. Huang, B. Cheng, Z. Gou, F. Zhang, Outdoor thermal comfort and adaptive behaviors in a university campus in China’s hot summer-cold winter climate region, Build Environ. 165 (2019) 106414. https://doi.org/10.1016/j.buildenv.2019.106414.

[112] J. Zhang, Z. Gou, Tree crowns and their associated summertime microclimatic adjustment and thermal comfort improvement in urban parks in a subtropical city of China, Urban Forestry & Urban Greening. 59 (2021) 126912. https://doi.org/10.1016/j.ufug.2020.126912.

[113] W. Guo, L. Jiang, B. Cheng, Y. Yao, C. Wang, Y. Kou, S. Xu, D. Xian, A study of subtropical park thermal comfort and its influential factors during summer, J Therm Biol. 109 (2022) 103304. https://doi.org/10.1016/j.jtherbio.2022.103304.

[114] Britannica, Koppen climate classification | Definition, System, & Map | Britannica, (2023). https://www.britannica.com/science/Koppen-climate-classification (accessed November 21, 2023).

[115] Statista, Most-visited city parks US 2022, Statista. (n.d.). https://www.statista.com/statistics/190057/number-of-visitors-to-city-parks-in-the-us-2009/ (accessed November 21, 2023).

[116] 123RF, Crowd of people walking on the street shallow depth of field, 123RF. (n.d.). https://www.123rf.com/photo_1180244_crowd-of-people-walking-on-the-street-shallow-depth-of-field.html (accessed November 21, 2023).

[117] Ahao, There are too many students enrolled in Henan’s colleges and universities, which are slightly smaller in size, and Henan Normal University is the most crowded!, (n.d.). https://baijiahao.baidu.com/s?id=1679054865734700552 (accessed November 21, 2023).

[118] N. Shachtman, How Many People Are in Tahrir Square? Here’s How to Tell, Wired. (n.d.). https://www.wired.com/2011/02/how-many-people-are-in-tahrir-square-heres-how-to-tell/ (accessed November 21, 2023).

[119] H. Shaftel, What Is Climate Change?, Climate Change: Vital Signs of the Planet. (n.d.). https://climate.nasa.gov/what-is-climate-change (accessed November 21, 2023).

[120] M. Lloyd, F. Wright-Brough, Setting out SET: a situational mapping of student evaluation of teaching in Australian higher education, Assess Eval High Edu. 48 (2023) 790–805. https://doi.org/10.1080/02602938.2022.2130169.

[121] A.P. Gagge, Y. Nishi, R. Gonzalez, Standard effective temperature - A single temperature index of temperature sensation and thermal discomfort, Proceeding of the CIB Commission W45 Symposium London 1972. (1972) 229–250.

[122] Z. Wang, Y. He, J. Hou, L. Jiang, Human skin temperature and thermal responses in asymmetrical cold radiation environments, Building and Environment. 67 (2013) 217–223. https://doi.org/10.1016/j.buildenv.2013.05.020.

[123] CASC, Revitalization of China’s Countryside: Aerospace Wisdom Helps Draw a New Picture Scroll of Rural Revitalization, (n.d.). https://baijiahao.baidu.com/s?id=1783171134828088197&wfr=spider&for=pc (accessed November 21, 2023).

Similar Articles

You may also start an advanced similarity search for this article.